Multivariate Animal model tag !P sire dam !P grp 49 sex brr 4 litter 4871 age wwt !m0 ywt !m0 # !M0 identifies missing values gfw !m0 fdm !m0 fat !m0 coop.fmt # read pedigree from first three fields coop.fmt !DOPATH $1 !CONTINUE !MAXIT 20 !STEP 0.01 # $1 allows selection of PATH as a command line argument !PATH 3 !EXTRA 4 # Force 4 more iterations after convergence criterion met !PATH wwt ywt gfw fdm fat ~ Trait Tr.age Tr.brr Tr.sex Tr.age.sex, !r Tr.tag , at(Tr,1).dam, at(Tr,2).dam, -at(Tr,3).dam .003, at(Tr,1).lit, at(Tr,2).lit, at(Tr,3).lit, at(Tr,4).lit, at(Trait,1).age.grp .0024, at(Trait,2).age.grp .0019, at(Trait,4).age.grp .0020, at(Trait,5).age.grp .00026, at(Trait,1).sex.grp .93, at(Trait,2).sex.grp 16.0, at(Trait,3).sex.grp .28, at(Trait,5).sex.grp 1.18, !f Tr.grp 1 2 3 # One multivariate R structure, 3 G structures 0 0 0 # No structure across lamb records # First zero lets ASReml count te number of records Tr 0 US #General structure across traits 7.66 5.33 13 .18 .66 .10 .78 2.1 .27 3.2 .73 2.02 .08 .20 1.44 Tr.tag 2 # Direct animal effects. !PATH 2 Tr 0 FA1 !GP 0.5 0.5 -.01 -.01 0.1 2.4 5.2 0.06 .8 .14 !PATH 3 Tr 0 US 2.4800 2.8 6.4 0.0128 0.03 0.06 -.1 -.22 -.0011 0.72 0.24 0.55 0.0026 -0.0202 0.14 !PATH tag at(Tr,1).dam 2 # Maternal effects. !PATH 2 2 0 CORGH !GFU .99 1.6 2.54 !PATH 3 2 0 US !GU 1.1 .58 .31 !PATH dam at(Tr,1).lit 2 # Litter effects. !PATH 2 4 0 FA1 !GP # Factor Analytic .5 .5 .01 .1 .01 4.95 4.63 0.037 0.941 0.102 !PATH 3 4 0 US # Unstructured 5.073 3.545 3.914 0.1274 0.08909 0.02865 0.07277 0.05090 0.001829 1.019 !PATH litThe term Tr.tag now replaces the sire (and part of dam) terms in the half-sib analysis. This analysis uses information from both sires and dams to estimate additive genetic variance. The dam variance component is this analysis only estimates the maternal variance component. It is only significant for the weaning and yearling weights. The litter variation remains unchanged. The ASReml input file again consists of several parts, which progressively build up to fitting unstructured variance models to Tr.tag, Tr.dam, Tr.litter and error. A portion of the output file is
tag !P dam !P age wwt !m0 ywt !m0 gfw !m0 fdm !m0 fat !m0 A-inverse retrieved from ainverse.bin PEDIGREE [pcoop.fmt ] has 10696 identities, 29474 Non zero elements QUALIFIERS: !CONTINUE !MAXIT 20 !STEP 0.01 QUALIFIERS: !EXTRA 4 QUALIFIER: !DOPATH 3 is active Reading pcoop.fmt FREE FORMAT skipping 0 lines Multivariate analysis of wwt ywt gfw fdm Multivariate analysis of fat Using 7043 records of 7043 read Model term Size #miss #zero MinNon0 Mean MaxNon0 1 tag !P 10696 0 0 3.000 5380. 0.1070E+05 2 sire 0 0 1.000 48.06 92.00 3 dam !P 10696 0 0 1.000 5197. 0.1070E+05 : Forming 95033 equations: 40 dense. Initial updates will be shrunk by factor 0.010 Restarting iteration from previous solution Notice: LogL values are reported relative to a base of -20000.00 NOTICE: 76 singularities detected in design matrix. 1 LogL=-1437.10 S2= 1.0000 35006 df : 2 components constrained 2 LogL=-1436.87 S2= 1.0000 35006 df : 3 components constrained 3 LogL=-1434.97 S2= 1.0000 35006 df : 2 components constrained 4 LogL=-1430.73 S2= 1.0000 35006 df : 2 components constrained 5 LogL=-1424.71 S2= 1.0000 35006 df : 1 components constrained 6 LogL=-1417.98 S2= 1.0000 35006 df : 1 components constrained 7 LogL=-1417.77 S2= 1.0000 35006 df : 1 components constrained 8 LogL=-1417.62 S2= 1.0000 35006 df : 1 components constrained 9 LogL=-1417.28 S2= 1.0000 35006 df 10 LogL=-1417.23 S2= 1.0000 35006 df : 16 LogL=-1417.23 S2= 1.0000 35006 df Source Model terms Gamma Component Comp/SE % C at(Trait,1).age.grp 49 49 0.132682E-02 0.132682E-02 2.02 0 P at(Trait,2).age.grp 49 49 0.908220E-03 0.908220E-03 1.15 0 P at(Trait,4).age.grp 49 49 0.175614E-02 0.175614E-02 1.13 0 P at(Trait,5).age.grp 49 49 0.223617E-03 0.223617E-03 1.73 0 P at(Trait,1).sex.grp 49 49 0.902586 0.902586 2.88 0 P at(Trait,2).sex.grp 49 49 15.3623 15.3623 3.50 0 P at(Trait,3).sex.grp 49 49 0.280673 0.280673 3.71 0 P at(Trait,5).sex.grp 49 49 1.42136 1.42136 1.80 0 P Residual UnStru 1 1 7.47555 7.47555 13.86 0 U : Covariance/Variance/Correlation Matrix UnStructured Residual 7.476 0.4918 0.1339 0.1875 0.1333 4.768 12.57 0.4381 0.3425 0.3938 0.1189 0.5049 0.1056 0.4864 0.1298 0.9377 2.221 0.2891 3.345 0.1171 0.4208 1.612 0.4869E-01 0.2473 1.333 Covariance/Variance/Correlation Matrix UnStructured Tr.tag 3.898 0.8164 0.5763 0.3899E-01 0.6148 4.877 9.154 0.3689 -0.1849 0.7217 0.3029 0.2971 0.7085E-01-0.2415E-01 0.3041 0.6021E-01-0.4375 -0.5027E-02 0.6117 -0.4672 0.6154 1.107 0.4104E-01-0.1853 0.2570 Covariance/Variance/Correlation Matrix UnStructured at(Tr,1).dam 0.9988 0.7024 0.5881 -0.7018 Covariance/Variance/Correlation Matrix UnStructured at(Tr,1).lit 3.714 0.5511 0.1635 -0.6157E-01 2.019 3.614 0.5176 -0.4380 0.4506E-01 0.1407 0.2045E-01-0.3338 -0.1021 -0.7166 -0.4108E-01 0.7407 Wald F statistics Source of Variation NumDF F-inc 15 Tr.age 5 99.16 16 Tr.brr 15 116.52 17 Tr.sex 5 59.94 19 Tr.age.sex 4 5.10There is no guarantee that unstructured variance component matrices will be positive definite unless !GP qualifier is set. This example highlights this issue. We used the !GU qualifier on the maternal component to obtain the matrix
0.9988 0.5881 0.5881 -0.7018ASReml reports the correlation as 0.7024 which it obtains by ignoring the sign in -0.7018. This is the maternal component for ywt. Since it is entirely reasonable to expect maternal influences on growth to have dissipated at 12 months of age, it would be reasonable to refit the model omitting at(Tr,2).dam and changing the dimension of the G structure.