Σ = | σ2eI + σ2eρ(J - I), |
It follows that
σ2e | = | σ21+ σ22
and
ρ | = | σ21/ (σ21+ σ22)
Portions of the two outputs are given below. The REML log-likelihoods
for the two models are the same and it is easy to verify that the REML
estimates of the variance parameters satisfy Eqn4, viz.
σ2e= 286.310 which is about 159.858 + 126.528 = 286.386 and
159.858/286.386 = 0.558191.
#
# !r units
#
LogL=-204.593 S2= 224.61 60 df 0.1000 1.000
LogL=-201.233 S2= 186.52 60 df 0.2339 1.000
LogL=-198.453 S2= 155.09 60 df 0.4870 1.000
LogL=-197.041 S2= 133.85 60 df 0.9339 1.000
LogL=-196.881 S2= 127.56 60 df 1.204 1.000
LogL=-196.877 S2= 126.53 60 df 1.261 1.000
Final parameter values 1.2634 1.0000
Source Model terms Gamma Component Comp/SE % C
units 14 14 1.26342 159.858 2.11 0 P
Variance 70 60 1.00000 126.528 4.90 0 P
#
# CORU
#
LogL=-196.975 S2= 264.10 60 df 1.000 0.5000
LogL=-196.924 S2= 270.14 60 df 1.000 0.5178
LogL=-196.886 S2= 278.58 60 df 1.000 0.5400
LogL=-196.877 S2= 286.23 60 df 1.000 0.5580
LogL=-196.877 S2= 286.31 60 df 1.000 0.5582
Final parameter values 1.0000 0.55819
Source Model terms Gamma Component Comp/SE % C
Variance 70 60 1.00000 286.310 3.65 0 P
Residual CORRelat 5 0.558191 0.558191 4.28 0 U
A more realistic model for repeated measures data would
allow the correlations to decrease as the lag increases such as occurs with
the first order
autoregressive model. However, since the heights are not measured at
equally spaced time points we use the EXP model. The
correlation function is given by
ρu= φu
where u is the time lag is weeks. The coding for this is
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
1 2 0 # One error structure in two dimensions
14 # Outer dimension: 14 plants
Tr 0 EXP .5
1 3 5 7 10 # Time coordinates
A portion of the output is
LogL=-183.734 S2= 435.58 60 df 1.000 0.9500
LogL=-183.255 S2= 370.40 60 df 1.000 0.9388
LogL=-183.010 S2= 321.50 60 df 1.000 0.9260
LogL=-182.980 S2= 298.84 60 df 1.000 0.9179
LogL=-182.979 S2= 302.02 60 df 1.000 0.9192
Final parameter values 1.0000 0.91897
Source Model terms Gamma Component Comp/SE % C
Variance 70 60 1.00000 302.021 3.11 0 P
Residual POW-EXP 5 0.918971 0.918971 29.53 0 U
When fitting power models be careful to ensure the scale of the
defining variate, here time, does not result in an estimate of
φ too close to 1. For example, use of days in this example would
result in an estimate for φ of about .993.
The residual plot from this analysis is presented in in the figure.
{Figure 2. Residual plots for the EXP variance model for the plant data.
This suggests increasing variance over time. This
can be modelled by using the EXPH model, which models Σ
by
Σ = D0.5CD0.5
where D is a diagonal matrix of variances and C is a
correlation matrix with elements given by cij = φ|ti- tj|. The coding for this is
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
1 2 0
14 !S2==1
Tr 0 EXPH .5 100 200 300 300 300
1 3 5 7 10
Note that it is necessary to fix the scale parameter
to 1 ( !S2==1) to ensure that the elements of D are
identifiable.
Abbreviated output from this analysis is
1 LogL=-195.598 S2= 1.0000 60 df : 1 components constrained
2 LogL=-179.036 S2= 1.0000 60 df
3 LogL=-175.483 S2= 1.0000 60 df
4 LogL=-173.128 S2= 1.0000 60 df
5 LogL=-171.980 S2= 1.0000 60 df
6 LogL=-171.615 S2= 1.0000 60 df
7 LogL=-171.527 S2= 1.0000 60 df
8 LogL=-171.504 S2= 1.0000 60 df
9 LogL=-171.498 S2= 1.0000 60 df
10 LogL=-171.496 S2= 1.0000 60 df
Source Model terms Gamma Component Comp/SE % C
Residual POW-EXP 5 0.906917 0.906917 21.89 0 U
Residual POW-EXP 5 60.9599 60.9599 2.12 0 U
Residual POW-EXP 5 72.9904 72.9904 1.99 0 U
Residual POW-EXP 5 309.259 309.259 2.22 0 U
Residual POW-EXP 5 436.380 436.380 2.52 0 U
Residual POW-EXP 5 382.369 382.369 2.74 0 U
Covariance/Variance/Correlation Matrix POWER
61.11 0.8227 0.6769 0.5569 0.4156
54.88 72.80 0.8227 0.6769 0.5051
93.12 123.5 309.7 0.8227 0.6140
91.02 120.7 302.7 437.1 0.7462
63.57 84.34 211.4 305.3 382.9
Wald F statistics
Source of Variation DF Fic
8 Trait 5 127.95
1 tmt 1 0.00
9 Tr.tmt 4 4.75
The last two models we fit are the antedependence model of order 1
and the unstructured model. These require, as starting values the
lower triangle of the full variance matrix. We use the REML estimate
of Σ from the heterogeneous power model shown in the
previous output. The antedependence model models Σ by the
inverse cholesky decomposition
Σ-1 = UDU'
where D is a diagonal matrix and U is a unit upper
triangular matrix. For an antedependence model of order q, then
uij = 0 for j>i+q-1. The antedependence model of order 1 has 9
parameters for these data, 5 in D and 4 in U. The input is given by
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
1 2 0
14 !S2==1
Tr 0 ANTE
60.16
54.65 73.65
91.50 123.3 306.4
89.17 120.2 298.6 431.8
62.21 83.85 208.3 301.2 379.8
The abbreviated output file is
1 LogL=-171.501 S2= 1.0000 60 df
2 LogL=-170.097 S2= 1.0000 60 df
3 LogL=-166.085 S2= 1.0000 60 df
4 LogL=-161.335 S2= 1.0000 60 df
5 LogL=-160.407 S2= 1.0000 60 df
6 LogL=-160.370 S2= 1.0000 60 df
7 LogL=-160.369 S2= 1.0000 60 df
Source Model terms Gamma Component Comp/SE % C
Residual ANTE=UDU 1 0.268657E-01 0.268657E-01 2.44 0 U
Residual ANTE=UDU 1 -0.628413 -0.628413 -2.55 0 U
Residual ANTE=UDU 2 0.372801E-01 0.372801E-01 2.41 0 U
Residual ANTE=UDU 2 -1.49108 -1.49108 -2.54 0 U
Residual ANTE=UDU 3 0.599632E-02 0.599632E-02 2.43 0 U
Residual ANTE=UDU 3 -1.28041 -1.28041 -6.19 0 U
Residual ANTE=UDU 4 0.789713E-02 0.789713E-02 2.44 0 U
Residual ANTE=UDU 4 -0.967815 -0.967815 -15.40 0 U
Residual ANTE=UDU 5 0.390635E-01 0.390635E-01 2.45 0 U
Covariance/Variance/Correlation Matrix ANTE=UDU'
37.20 0.5946 0.3549 0.3114 0.3040
23.38 41.55 0.5968 0.5237 0.5112
34.83 61.89 258.9 0.8775 0.8565
44.58 79.22 331.4 550.8 0.9761
43.14 76.67 320.7 533.0 541.4
Wald F statistics
Source of Variation DF Fic
8 Trait 5 188.84
1 tmt 1 4.14
9 Tr.tmt 4 3.91
The iterative sequence converged and the antedependence parameter
estimates are printed columnwise by time,
the column of U and the element of D. I.e.
D = diag(
0.0269
0.0373
0.0060
0.0079
0.0391 ),
U =
1.0 | -0.6284 | 0 | 0 | 0
| 0 | 1 | -1.4911 | 0 | 0
| 0 | 0 | 1 | -1.2804 | 0
| 0 | 0 | 0 | 1 | -0.9678
| 0 | 0 | 0 | 0 | 1 .
| .
Finally the input and output files for the unstructured model are
presented below.
The REML estimate of Σ from the ANTE model is used to
provide starting values.
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
1 2 0
14 !S2==1
Tr 0 US
37.20
23.38 41.55
34.83 61.89 258.9
44.58 79.22 331.4 550.8
43.14 76.67 320.7 533.0 541.4
1 LogL=-160.368 S2= 1.0000 60 df
2 LogL=-159.027 S2= 1.0000 60 df
3 LogL=-158.247 S2= 1.0000 60 df
4 LogL=-158.040 S2= 1.0000 60 df
5 LogL=-158.036 S2= 1.0000 60 df
Source Model terms Gamma Component Comp/SE % C
Residual US=UnStr 1 37.2262 37.2262 2.45 0 U
Residual US=UnStr 1 23.3935 23.3935 1.77 0 U
Residual US=UnStr 2 41.5195 41.5195 2.45 0 U
Residual US=UnStr 1 51.6524 51.6524 1.61 0 U
Residual US=UnStr 2 61.9169 61.9169 1.78 0 U
Residual US=UnStr 3 259.121 259.121 2.45 0 U
Residual US=UnStr 1 70.8113 70.8113 1.54 0 U
Residual US=UnStr 2 57.6146 57.6146 1.23 0 U
Residual US=UnStr 3 331.807 331.807 2.29 0 U
Residual US=UnStr 4 551.507 551.507 2.45 0 U
Residual US=UnStr 1 73.7857 73.7857 1.60 0 U
Residual US=UnStr 2 62.5691 62.5691 1.33 0 U
Residual US=UnStr 3 330.851 330.851 2.29 0 U
Residual US=UnStr 4 533.756 533.756 2.42 0 U
Residual US=UnStr 5 542.175 542.175 2.45 0 U
Covariance/Variance/Correlation Matrix US=UnStructu
37.23 0.5950 0.5259 0.4942 0.5194
23.39 41.52 0.5969 0.3807 0.4170
51.65 61.92 259.1 0.8777 0.8827
70.81 57.61 331.8 551.5 0.9761
73.79 62.57 330.9 533.8 542.2
The antedependence model of order 1 is clearly more parsimonious than
the unstructured
model. The next Table presents the incremental Wald tests for each
of the variance models. There is a surprising level of discrepancy
between models for the Wald tests. The main effect of treatment is
significant for the uniform, power and antedependence models.
Table Summary of Wald test for fixed effects for variance models fitted to the plant data
| treatment | treatment.time
| model | (df=1) | (df=4)
| Uniform | 9.41 | 5.10
| Power | 6.86 | 6.13
| Heterogeneous power | 0.00 | 4.81
| Antedependence (order 1) | 4.14 | 3.96
| Unstructured | 1.71 | 4.46
|
Back
Return to start
|