Whole genome analysis for QTL/association enrichment
Running...
Version: Enrich S: beta v0.8
Data:
Number of semen quality traits:
3
Number of QTL / associations found:
35
Number of chromosomes where QTL / associations are found:
16
Chi-squared (χ2) test: are semen quality traits over-represented on some chromosomes?
Chromosomes
Total χ2
df
p-values
FDR *
Size of χ2
Chromosome 1
1.93392
15
0.9999763
0.9999999
Chromosome 2
4.50537
15
0.9955505
0.9999999
Chromosome 3
0.90537
15
0.9999999
0.9999999
Chromosome 5
0.04821
15
0.998329325823115
0.9999999
Chromosome 7
0.90537
15
0.9999999
0.9999999
Chromosome 8
0.04821
15
0.998329325823115
0.9999999
Chromosome 9
4.50537
15
0.9955505
0.9999999
Chromosome 10
0.04821
15
0.998329325823115
0.9999999
Chromosome 11
1.93392
15
0.9999763
0.9999999
Chromosome 12
0.04821
15
0.998329325823115
0.9999999
Chromosome 14
0.04821
15
0.998329325823115
0.9999999
Chromosome 15
0.04821
15
0.998329325823115
0.9999999
Chromosome 17
1.93392
15
0.9999763
0.9999999
Chromosome 20
1.93392
15
0.9999763
0.9999999
Chromosome 24
1.93392
15
0.9999763
0.9999999
Chromosome 25
4.50537
15
0.9955505
0.9999999
Chi-squared (χ2) test: Which of the 3 semen quality traits are over-represented in the QTLdb
Traits
Total χ2
df
p-values
FDR *
Size of χ2
Semen volume
12.71295
2
0.001735473
0.003018894
Sperm concentration
12.41666
2
0.002012596
0.003018894
Sperm motility
9.06018
2
0.01077971
0.010779710
Correlations found between some of these traits for your reference
No correlation data found on these traits
Overall Test
Data
Chi'Square Test
Fisher's Exact Test
Number of chrom.:
16
χ2
=
25.285710
Number of traits:
3
df
=
30
Number of QTLs:
35
p-value
=
0.7110314
FOOT NOTE: * : FDR is short for "false
discovery rate", representing the expected proportion of type I errors. A type I
error is where you incorrectly reject the null hypothesis, i.e. you get a false
positive. It's statistical definition is FDR = E(V/R | R > 0) P(R > 0), where
V = Number of Type I errors (false positives); R = Number of rejected hypotheses.
Benjamini–Hochberg procedure is a practical way to estimate FDR.