Whole genome analysis for QTL/association enrichment
Running...
Version: Enrich S: beta v0.8
Data:
Number of resistance to bacterial infection traits:
5
Number of QTL / associations found:
381
Number of chromosomes where QTL / associations are found:
14
Chi-squared (χ2) test: are resistance to bacterial infection traits over-represented on some chromosomes?
Chromosomes
Total χ2
df
p-values
FDR *
Size of χ2
Chromosome 3
90.66460
13
1.042806e-13
1.123022e-13
Chromosome 7
116.80635
13
8.592903e-19
1.203006e-18
Chromosome 8
368.51235
13
9.823107e-71
1.375235e-69
Chromosome 9
126.25515
13
1.161245e-20
3.251486e-20
Chromosome 10
116.80635
13
8.592903e-19
1.203006e-18
Chromosome 11
126.25515
13
1.161245e-20
3.251486e-20
Chromosome 13
90.66460
13
1.042806e-13
1.123022e-13
Chromosome 14
116.80635
13
8.592903e-19
1.203006e-18
Chromosome 16
107.72495
13
5.205723e-17
6.625466e-17
Chromosome 17
75.07405
13
9.222004e-11
9.222004e-11
Chromosome 19
116.80635
13
8.592903e-19
1.203006e-18
Chromosome 21
116.80635
13
8.592903e-19
1.203006e-18
Chromosome 23
126.25515
13
1.161245e-20
3.251486e-20
Chromosome 25
11371.66200
13
9e-41
6.300000e-40
Chi-squared (χ2) test: Which of the 5 resistance to bacterial infection traits are over-represented in the QTLdb
Traits
Total χ2
df
p-values
FDR *
Size of χ2
Aeromonas salmonicida survival rate
252.00002
4
2.413763e-53
6.034407e-53
Aeromonas salmonicida survival time
125.99998
4
2.790178e-26
4.650297e-26
Bacterial coldwater disease survival rate
11.90636
4
0.01806135
2.257669e-02
Bacterial coldwater disease survival time
7.08643
4
0.1313907
1.313907e-01
Columnaris disease survival rate
267.6254
4
1.036606e-56
5.183030e-56
Correlations found between some of these traits for your reference
No correlation data found on these traits
Overall Test
Data
Chi'Square Test
Fisher's Exact Test
Number of chrom.:
14
χ2
=
13067.099750
Number of traits:
5
df
=
52
Number of QTLs:
381
p-value
=
0
FOOT NOTE: * : FDR is short for "false
discovery rate", representing the expected proportion of type I errors. A type I
error is where you incorrectly reject the null hypothesis, i.e. you get a false
positive. It's statistical definition is FDR = E(V/R | R > 0) P(R > 0), where
V = Number of Type I errors (false positives); R = Number of rejected hypotheses.
Benjamini–Hochberg procedure is a practical way to estimate FDR.