Lecture 12 Experimental strategies for QTL detection

Jack Dekkers Iowa State University Ames, Iowa, USA

Molecular Genetic Strategies for QTL Detection Genome Scan Approach

> Anonymous genetic markers placed across genome (every 20 cM)

M ₁	<i>M</i> ₂	M ₃	<u>Q</u>	M_4	M ₅	M ₆
<i>m</i> ₁	<i>m</i> ₂	<i>m</i> ₃	q	<i>m</i> ₄	<i>m</i> ₅	<i>m</i> ₆

Look for association of markers with trait phenotype

Requires populations segregating for QTL and markers

Requires linkage disequilibrium between markers and QTL

marker and QTL (expected to be) in population-wide equilibrium (unless tightly linked)

Need specific family/resource population designs that generate sufficient linkage disequilibrium

Populations designs for marker QTL mapping

Crosses between inbred (preferred) or outbred lines

- > Back cross
- > F2 cross

must differ in QTL frequency

Advanced intercrosses (F3, etc.)

Within outbred populations

> Half sib families

- > Full sib families
- **3-generation families** (e.g. grand daughter design)
- >> Selective Genotyping
- Selective DNA pooling (Bulk segregant analysis)

Power of alternative QTL mapping designs For given number of animals genotyped Candidate gene > F2 > BC > Fullsib > Halfsib

Strategies to reduce # genotypings

3-generation families (grand-daughter design)

≻Selective genotyping

$(p_{UM} p_{LM})$ vs $(p_{UN} p_{LN})$ provides information on QTL position and effect

 $E(p_{UM}-p_{LM}) = (1-2r_1)(2p_{UQ}-1)$

 $\mathbf{E}(\mathbf{p}_{\rm UN} - \mathbf{p}_{\rm LN}) = (1 - 2r_2)(2p_{\rm UQ} - 1) = (1 - 2\theta)(2p_{\rm UQ} - 1)/(1 - 2r_1)$

 $\hat{\mathbf{r}}_{1} = \frac{1}{2} - \frac{1}{2} \sqrt{\left[(1 - 2\theta) (\mathbf{p}_{\mathrm{UM}} \mathbf{p}_{\mathrm{LM}}) / (\mathbf{p}_{\mathrm{UN}} \mathbf{p}_{\mathrm{LN}}) \right]}$ $\hat{\mathbf{p}}_{\mathrm{UQ}} = \frac{1}{2} + \frac{1}{2} \sqrt{\left[(1 - 2\theta) (\mathbf{p}_{\mathrm{UM}} \mathbf{p}_{\mathrm{LM}}) (\mathbf{p}_{\mathrm{UN}} \mathbf{p}_{\mathrm{LN}}) \right]}$ $\hat{\alpha} = (\mu_{\mathrm{M}} - \mu_{\mathrm{m}}) / \mathbf{i}_{\mathrm{s}}^{2}$

